Abstract
Diamond is a promising material for terahertz applications. In this work, we use a non-invasive optical pump-terahertz probe method to experimentally study the photoinduced carrier dynamics in doped diamond monocrystals and a new diamond-silicon composite. The chemical vapor deposited diamond substrate with embedded silicon microparticles showed two photoinduced carrier lifetimes (short lifetime on the order of 4 ps and long lifetime on the order of 200 ps). The short lifetime is several times less than in boron-doped diamonds and nitrogen-doped diamonds which were grown using a high temperature-high pressure technique. The observed phenomenon is explained by the transport of photoexcited carriers across the silicon-diamond interface, resulting in dual relaxation dynamics. The observed phenomenon could be used for ultrafast flexible terahertz modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.