Abstract
The optical properties of ZnO/Mg0.1Zn0.9O single quantum wells with graded well width were studied using temperature-dependent photoluminescence (PL) spectroscopy. The ratio of emission intensity between the well and barrier layers was found to increase monotonically when the sample temperature was increased from 78 to 210 K, indicating an efficient carrier transfer from the barrier to the well. The emission peak of the Mg0.1Zn0.9O barrier exhibited a blueshift first and then a redshift with increasing temperature, which was attributed to the repopulation of localized carriers in energy-tail states induced by alloy composition fluctuations. Such an anomalous temperature dependence of PL energy contributed to the carrier transfer. On the other hand, the emission from the well layer exhibited a transition behaviour from localized to free excitons with increasing temperature. A further analysis of the temperature-dependent emission peaks of different well widths revealed that the localization energy of excitons was related to the potential variation induced mainly by well width fluctuations. Moreover, by comparing experimental results with calculation, the separation between the quantum confinement regime and quantum-confined Stark regime was found to occur at a well width of about 3 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.