Abstract

Characteristic absorption and photoluminescence (PL) of TiO2 and disperse red-19 (DR-19) composite have been investigated. Two step synthetic processes were employed to incorporate the DR-19 to the TiO2 sol–gel. Firstly, urethane bonds between the DR-19 (OH) and 3-isocyanatopropyl triethoxysilane (ICPTES, NCO) were fabricated (ICPDR) prior incorporation to the TiO2 sol–gel. Secondary, hydrolysis of the ethoxy group from the ICPDR and condensation reaction between silanol groups from ICPDR and TiO2 sol–gel were performed by adding ICPDR to the TiO2 sol–gel and aged for several days at room temperature (ICPDRTiO2). There was no absorption peak shift with increasing the DR-19 concentration in methanol. However, UV–visible absorption band was shifted toward red approximately 0.09eV for the ICPDRTiO2 film, which indicated the formation of dimmer or more aggregates. The PL peaks of ICPDRTiO2 were red-shifted compared with DR-19 in methanol (0.12eV) and ICPDR film (0.09eV). The relatively large emission peak shift toward red could be due to the fluorescence resonance energy transfer (FRET) between DR-19 and TiO2 in ICPDRTiO2 matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.