Abstract

Atmospheric pressure chemical vapor deposition (APCVD) system, designed for the deposition of F-doped SnO 2 thin films, is compatible with industrial requirements such as high process speed, scaling to wide substrate widths and low costs. Precise method for measuring the optical absorptance in the spectral range 300–1700 nm combines transmittance, reflectance and photothermal deflection (PDS) spectra measured on the same spot of the sample immersed in the transparent liquid with a relatively high index of refraction. The effects of the film thickness, doping gas addition and the susceptor temperature on the optical absorptance and electrical resistivity of the TCO films are assessed. We show that the doping gas concentration and the susceptor temperature influence both the incorporation ratio of dopants into SnO 2 film as well as the defect concentration. The SnO 2 films growth at optimum APCVD conditions have thickness 0.7 µm, average surface roughness about 40 nm, sheet electrical resistance 10 Ω/sq and the optical absorption 1% at 500 nm and about 5% at 1000 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.