Abstract

We report results of experimental studies of the photoabsorption, photoluminescent and photoelectric properties of a new type of multilayer molecular nanocrystals, consisting of highly ordered J-aggregates of one anionic and two cationic J-aggregates of cyanine dyes. In contrast to conventional J-aggregated dyes the multichromic nanocrystals synthesized in this work, are capable of efficient light absorption in three excitonic bands of the visible and near-IR spectral ranges. The spectral peak positions in the absorption bands can be controlled by appropriately selecting a set of dyes a molecular crystal is made of. Our investigations of the photoelectric properties of multichromic crystals have shown that each of them can potentially be used as a photosensitive layer of a photocell with photoconductivity in three peaks of excitonic absorption. The synthesized nanocrystals are attractive for the creation of thin-film organic photodetectors with a large photosensitive area and varied photoabsorption spectra, excitonic waveguides and for some other applications in organic and hybrid photonics and optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call