Abstract

Polymeric films composed of mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) are prepared from casting combined solvent (methylene chloride and methanol in 1:1 ratio) containing 8% weight/volume of both polymers (EC to HPC in 1:3 weight ratio). The structural and optical studies of the films are carried out by X-ray diffraction and UV–vis spectrophotometer. The films are polycrystalline structure with an average grain size from 23.15 to 10.79nm. The possible optical transition in these films is found to be allowed direct transition. The optical band gap energy (Eg) is estimated to be 5.02eV for HPC–EC plain film and then decreases with increasing the filler content reaching to 4.24eV for the film filled with maximum Se80Te14Sn6 content of 1w%. This suggests that Se80Te14Sn6, as filler, is a good choice to control the optical properties of HPC–EC blend film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call