Abstract

SiOx thin films were prepared using magnetron sputtering with different O2 flow rates on a silicon substrate. The samples were characterized using Fourier transform infrared spectroscopy in transmission and reflection, covering a spectral range of 5 to 25 μm. By employing a multilayer model, the values of the complex refractive index that best fit the experimental transmission and reflection results were optimized using the Brendel-Bormann oscillator model. The results demonstrate the significance of selecting an appropriate range of O2 flow rates to modify the SiOx stoichiometry, as well as how the refractive index values can be altered between those of Si and SiO2 in the mid-infrared range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.