Abstract
A luminescent material with various optical properties based on a triphenylamine Zn(II) complex is described. The ultraviolet–visible absorption, one-photon excited fluorescence (OPEF) and two-photon excited fluorescence (TPEF) of the complex indicate that the material has good OPEF and TPEF properties. And the results of one- and two-photon HepG2 cells imaging experiments show the potential of the complex in fluorescence microscopy bioimaging. The experimental Stokes shift and the FWHM (full-width at half-maximum) in different solvents were correlated with the rMPI polarity of the solvent, and the perfect Boltzmann curves were obtained, where the Boltzmann correlation between Stokes shift and solvent polarity is reported for the second time. But the Boltzmann correlation between FWHM and solvent polarity is reported for the first time. In addition, the computational results indicate that, the covalent bond within the salt ZnBr2 is strengthened by the coordination, and the newly formed coordination bond Zn-N is stronger than the original covalent bond Zn-Br.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.