Abstract
Anisole (C6H5OCH3) has previously been identified as a fluorescence tracer for fuel/air mixing studies based on laser-induced fluorescence (LIF) that provides stronger signal than the frequently-used toluene (Faust et al. (2013)). Reliable and quantitative application of anisole LIF at high temperature requires knowledge about its photophysical properties and its thermal stability. In this work, ultraviolet absorption and LIF of anisole were measured as a function of time in shock-heated gases at temperatures between 565 and 1620K and at pressures of 1.3 and 2.9bar. Absorption spectra were acquired with 50µs time resolution in the 240–310nm spectral range. LIF emission spectra of anisole were recorded at different fixed reaction times behind reflected shock waves using 266-nm laser excitation. Relative fluorescence quantum yields were determined that extend previously reported data beyond 980K. After the onset of pyrolysis of anisole at T >1000K, effective absorption cross-sections and the corresponding LIF signals after 266-nm excitation are reported. To aid the interpretation of these experiments, the products of anisole pyrolysis were investigated using a shock tube coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) for time-resolved multispecies measurements. Concentration-time profiles for anisole and products such as benzene, C2H4, and CO were measured and compared to simulations using two kinetics models from literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have