Abstract

We propose and experimentally demonstrate an optical processor for a binarized neural network (NN). Implementation of a binarized NN involves multiply-accumulate operations, in which positive and negative weights should be implemented. In the proposed processor, the positive and negative weights are realized by switching the operations of a dual-drive Mach-Zehnder modulator (DD-MZM) between two quadrature points corresponding to two binary weights of +1 and -1, and the multiplication is also performed at the DD-MZM. The accumulation operation is realized by dispersion-induced time delays and detection at a photodetector (PD). A proof-of-concept experiment is performed. A binarized convolutional neural network (CNN) accelerated by the optical processor at a speed of 32 giga floating point operations/s (GFLOPS) is tested on two benchmark image classification tasks. The large bandwidth and parallel processing capability of the processor has high potential for next generation data computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.