Abstract
This paper deals with facility location problems on graphs with positive and negative vertex weights. We consider two different objective functions: In the first one (MWD) vertices with positive weight are assigned to the closest facility, whereas vertices with negative weight are assigned to the farthest facility. In the second one (WMD) all the vertices are assigned to the nearest facility. For the MWD model it is shown that there exists a finite set of points in the graph which contains the locations of facilities in an optimal solution. Furthermore, algorithms for both models for the 2-median problem on a cycle are developed. The algorithm for the MWD model runs in linear time, whereas the algorithm for the WMD model has a time complexity of O(n 2 ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.