Abstract
We investigated an optical microsensor of the polarization state of a laser light based on a metalens. In contrast to known polarization sensors based on metasurfaces that deflect different polarization types using various angles to the optical axis, the studied polarization sensor generated different patterns in the metalens focus to realize varied polarization states: left circular polarization generated a light ring in the focus, right circular polarization generated a circular focal spot, and linear polarization generated an elliptic spot with two sidelobes. Moreover, the tilt angle of the linear polarization matched the tilt angle of the elliptic focal spot. The simulation results were consistent with the theoretical predictions. A metalens with a diameter of several tens of microns was designed and fabricated in a thin amorphous silicon film with a thickness of 120 μm and a low aspect ratio, high numerical aperture, and short focal distance equal to a wavelength of 633 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.