Abstract

We report a theoretical study of the carrier relaxation in a quantum cascade laser (QCL) subjected to a strong magnetic field. Both the alloy (GaInAs) disorder effects and the Frohlich interaction are taken into account when the electron energy differences are tuned to the longitudinal optical (LO) phonon energy. In the weak electron-phonon coupling regime, a Fermi's golden rule computation of LO phonon scattering rates shows a very fast non-radiative relaxation channel for the alloy broadened Landau levels (LL's). In the strong electron-phonon coupling regime, we use a magneto-polaron formalism and compute the electron survival probabilities in the upper LL's with including increasing numbers of LO phonon modes for a large number of alloy disorder configurations. Our results predict a nonexponential decay of the upper level population once electrons are injected in this state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call