Abstract

A practical optical printed circuit board (PCB) was demonstrated, using a waveguide-embedded optical backplane and processing boards. The polymeric waveguide was produced by means of a hot embossing technique then embedded following a conventional lamination processes. The core size of waveguide was 100 x 60 &#956;m<sup>2</sup> (input section), 60 x 60 &#956;m<sup>2</sup> (output section), and the propagation loss of tapered polymeric waveguide was approximately 0.1 dB/cm at 850 nm. We prepared a optical backplane with polymeric waveguide by using conventional multilayer board lamination processes. The transmission power and dimension of the optical backplane was same as those of waveguide before lamination. A metal optical bench was used as a packaging die for the optical devices and the integrated circuit chips in both the transmitter and the receiver processing boards. We used a 1&times;4 850 nm VCSEL array with 2 dBm of output power for the transmitter and a PIN photodiode array for the receiver. We successfully demonstrated 8 Gb/s of data transmission between the transmitter processing board and the optical backplane board.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call