Abstract

By using the Rand and Basore (R&B) physical model for light trapping, a particular analytical expression for near-bandgap optical path length factor Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> is derived for the case where back surface reflectivity R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BACK</sub> is equal to unity (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BACK</sub> = 1). This expression shows that according to the R&B physical model, at R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BACK</sub> = 1, Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> has a finite value. At R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BACK</sub> = 1, the R&B expression for Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> is shown to diverge. By using the original R&B derivation procedure, a new expression for Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> is obtained, which at R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BACK</sub> = 1, reduces to the aforementioned particular expression for ideal back surface reflectance. The new expression is immune from the physical incongruity and tendency to overestimate Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> that affect the R&B expression. By using the new expression, a relationship between Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> and the Yablonovitch and Cody (Y&C) absorption-enhancement factor is derived for devices where parasitic absorption predominantly occurs at backside reflector. This relationship is shown to be in agreement with the literature. In the derivation, a connection between the approaches to light trapping of R&B and Y&C is exploited. This connection allows obtaining a new method to evaluate R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BACK</sub> at near-bandgap wavelengths in most Si solar cells. The new method is checked on two real Si solar cells and found to provide plausible results. Compared to the method used by R&B, the method presented in this paper is shown to be more reliable

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call