Abstract

Synthetic antiferromagnetic nanoplatelets (NPs) with a large perpendicular magnetic anisotropy (SAF-PMA NPs) have a large potential in future local mechanical torque-transfer applications for e.g., biomedicine. However, the mechanisms of magnetization switching of these structures at the nanoscale are not well understood. Here, we have used a simple and relatively fast single-particle optical technique that goes beyond the diffraction limit to measure photothermal magnetic circular dichroism (PT MCD). This allows us to study the magnetization switching as a function of applied magnetic field of single 122 nm diameter SAF-PMA NPs with a thickness of 15 nm. We extract and discuss the differences between the switching field distributions of large ensembles of NPs and of single NPs. In particular, single-particle PT MCD allows us to address the spatial and temporal heterogeneity of the magnetic switching fields of the NPs at the single-particle level. We expect this new insight to help understand better the dynamic torque transfer, e.g., in biomedical and microfluidic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call