Abstract

Mechanical forces such as adhesion, shear stress and compression play crucial roles in tissue growth, patterning and development. To understand the role of these mechanical stimuli, it is of great importance to measure biomechanical properties of developing, engineered, and natural tissues. To enable these measurements on the micro-scale, a novel, dynamic, non-invasive, high-speed optical coherence elastography (OCE) system has been developed utilizing spectral-domain optical coherence tomography (OCT) and a mechanical wave driver. Experimental results of OCE on silicone phantoms are in good agreement with those obtained from a standardized indentation method. Using phase-resolved imaging, we demonstrate OCE can map dynamic elastic moduli of normal and neoplastic ex vivo human breast tissue with a sensitivity of 0.08%. Spatial micro-scale mapping of elastic moduli of tissue offers the potential for basic science and clinical investigations into the role biomechanics play in health and disease.

Highlights

  • Mechanical forces play a significant role in biological tissue development, organization, and response to stimuli

  • We report microscale optical mapping of biomechanical properties of tissues based on a dynamic optical coherence elastography method in which tissue is excited by mechanical waves, and the biomechanical properties can be obtained by solving the wave equations, without the need for computationally expensive cross-correlations

  • Since the indentation method is a standardized way of measuring the elastic modulus of soft tissues, the elastic moduli data by optical coherence elastography (OCE) methods are calibrated with the indentation method data according to Fig. 4

Read more

Summary

Introduction

Mechanical forces play a significant role in biological tissue development, organization, and response to stimuli. Biomechanical properties of living tissues and engineered tissues depend on their molecular building blocks which can shape and modify the cellular and extracellular structures under stress [1]. Forces of adhesion between layers of cells are known to regulate the extracellular growth of tissues [2] and cyclic mechanical strain regulates the development of engineered smooth muscle tissues [3]. Pathological changes in the tissue micro-structure such as tumor invasion will lead to different biomechanical properties in tissues. To detect such alterations in soft tissues, physicians for centuries have routinely used palpation as a qualitative method. To investigate and quantitatively measure biomechanical properties of tissue as indicators of tissue health and disease, investigators have utilized biomedical imaging technologies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.