Abstract
We report how the total carbon content and the amorphous carbon (a-C) phase fraction in transition metal carbide/a-C nanocomposite coatings can be obtained using optical methods, which are much more practical for industrial use than conventional X-ray photoelectron spectroscopy. A large set of carbon-containing nanocomposite coatings deposited using different magnetron sputtering techniques were analyzed by X-ray photoelectron spectroscopy, reflectance spectrophotometry, and spectroscopic ellipsometry. The chemical composition and the a-C phase fraction were determined by X-ray photoelectron spectroscopy for each coating and results are presented for the TiC, CrC, and NbC systems. The composition and the a-C phase fraction are correlated to optical reflectance in the visible range, by parametrization in L*a*b* color space, and by ellipsometry primary data. Results show that it is possible to rapidly estimate the composition and the a-C fraction using these optical methods. We propose that optical methods have promising use in the industry as a cost-efficient technique for characterization of carbide-based coatings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have