Abstract

The planar optical mediums with properties of either birefringence (i.e., waveplates) or anisotropic absorption (i.e., polarizers) are well studied. However, how a beam propagates in a birefringent curved medium with anisotropic absorption, especially for curved-sheet polarizers, still needs to be investigated. In this paper, we study optical wave propagation through a curved-birefringent medium with anisotropic absorption. We built an optical model based on the Mueller matrix to predict the spatial distributions in light intensity and polarization when light propagates in a curved-birefringent medium with anisotropic absorption. To demonstrate how to use the optical model, the experiments based on ellipsometry are also performed. The impact of this study is to analyze the light propagation in birefringent-curved medium with anisotropic absorption, which could affect the performance of curved liquid crystal devices with curved polarizers, such as curved liquid crystal displays (LCDs), flexible LCDs, and flexible LC lenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.