Abstract

Two coupled exciton-polariton condensates (EPCs) in a double-well photonic potential are suggested to form the optical Josephson oscillation (JO) whose dependences on the pump arrangement, the potential geometry, and the exciton-photon detuning are studied through the Gross-Pitaevskii equations. When the pump detuning is slightly positive with respect to the polariton energy and the phase difference between the two EPCs is near π/2 (both are controlled by the pump beams), the system demonstrates the optical JO. The optical JO tunneling strength (J) depends on the distance (d) and barrier (Λ) between the two wells, for which an empirical formula is fitted, i.e., J≈0.42exp⁡(-d Λ/18.4) with the energy and length units in meV and μm. Since the double-well potential adopted is general, this fitting relation can show a guidance in practice for designing the optical devices based on the optical JO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.