Abstract

Exciton-polariton condensate is a new kind of system exhibiting spontaneous coherence, which is a new quantum dissipation system. Numerical simulation and analytical methods can be used to study the static and dynamical properties of exciton-polariton condensate. In this paper, A modified Lagrangian method is developed for exciton-polariton system to find the steady-state structure and regimes among the parameters of the system, and two new forms of trial wave function are proposed. The modified Lagrangian method is successfully applied to the exciton-polariton system described by the open-dissipative Gross-Pitaevskii equation for the first time. Furthermore, static version of the modified Lagrangian method provides stationary shape of the steady-state structure, while the time-dependent version can be used to study small amplitude oscillations around stationary states. On the one hand, comparison of the profiles for steady-state structure, predicted by the modified Lagrangian and those found from numerical solution of the open-dissipative Gross-Pitaevskii(dGP) equation shows good agreement, thereby proving the accuracy of the trial wave function and validating the proposed approach. Particularly, this new method promotes the deeper cognition and understanding for the dissipative exciton-polariton system and is helpful to explore the mechanism of the gain and dissipation effect on the steady-state structure of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.