Abstract

Optical interferometric techniques are used for absolute (calibrated) displacement measurements of focused ion beam (FIB)-fabricated nanoelectromechanical systems (NEMS). FIB nanomachining of bulk Si gives rapidly prototyped cantilever and doubly clamped beam devices. Ion impingement from orthogonal directions allows tailoring of deep, undercut-free gaps between the device layer and the bulk, in turn allowing large amplitude NEMS oscillatory motion, access to a nonlinear readout regime and a new calibration method for optical interferometric displacement detection. The measurements are sensitive enough to determine the thermomechanical noise floor of a bulk FIBed NEMS device with a displacement sensitivity of 166 fm Hz−½, limited by the combination of optical shot noise and detector dark current. This sensitivity, comparable to the state of the art for free-space optical interferometry of NEMS, validates the robustness of the bulk FIB fabrication technique for rapid prototyping of nanoscale mechanical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call