Abstract

Optical interferometric displacement detection techniques have recently found use in the study of nanoelectromechanical systems (NEMS). Here, we study the effectiveness of these techniques as the relevant NEMS dimensions are reduced beyond the optical wavelength used. We first demonstrate that optical cavities formed in the sacrificial gaps of subwavelength NEMS enable enhanced displacement detection sensitivity. In a second set of measurements, we show that the displacement sensitivity of conventional path-stabilized Michelson interferometry degrades rapidly beyond the diffraction limit. Both experiments are consistent with numerical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.