Abstract

For improved real-time process control we integrated a novel optical in-situ monitoring system in a vertical reactor for hydride vapor phase epitaxy (HVPE) growth of gallium nitride (GaN) bulk crystals. The in-situ monitoring system consists of a fiber-optical interferometric sensor in combination with an optimized differential measuring head. The system only needs one small optical path perpendicular to the center of the layer stack typically consisting of sapphire as substrate and GaN. It can handle sample distances up to 1m without difficulty. The in-situ monitoring system is simultaneously measuring the optical layer thicknesses of the GaN/sapphire layer stack and the absolute change of the distance between the measuring head and the backside of the layer stack. From this data it is possible to calculate the thickness of the growing GaN up to a thickness of about 1000µm and the absolute change in curvature of the layer stack. The performance of the in-situ monitoring system is shown and discussed based on the measured interference signals recorded during a short-time and a long-time HVPE growth run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.