Abstract

Although optical imaging of decayed positrons and muons can provide promising methods, it has been attempted only for muons without a collimator, and the beam characteristics with collimators, such as peak position or beam spread in depth and lateral directions, have not yet been evaluated. Therefore, we conducted optical imaging of decayed positrons and muons with different collimators. For the imaging of decayed positrons, Cherenkov-light imaging in fluorescein (FS) water was used, while imaging of a plastic scintillator block was used for the imaging of muons. We conducted these imaging trials during irradiation with 84.5-MeV/c positive muons to an FS water phantom or a plastic scintillator block using a cooled charge-coupled device (CCD) camera with each collimator of a different diameter attached to the beam port. We could measure the Cherenkov-light images of FS water of decayed positrons and optical images of muons using the plastic scintillator block for all collimators. The depth profiles of the Cherenkov-light images were slightly wider for the muons with the collimators of larger diameters, although the estimated peak depths were nearly the same for all collimators. The lateral profiles of the Cherenkov light were wider for the muons when using collimators of larger diameters. Asymmetry in the directions of positron emissions from the muons was observed for all collimators. The depth profiles of the optical image of muons using a plastic scintillator block had nearly the same shape. The estimated lateral widths of the optical images of the plastic scintillator block were the same sizes as the collimator diameters within a 1.1-mm difference at a 10-mm depth of the scintillator block, and the widths were wider at the Bragg peak. With these measured optical images, we conclude that Cherenkov-light imaging of decayed positrons in water and optical imaging of muons using a plastic scintillator block with collimators are useful methods for determining not only peak position but also beam width as well as the asymmetry of the directions of positron emissions from the muons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call