Abstract

We examine the effect of spatial coherence on the image quality of a classic 4f imaging system when its Fourier plane is partially blocked by an opaque obstacle. We find that although reducing the degree of spatial coherence of the source results in the improved image quality, the concurrent distortions in the image plane are inevitable. Employing a suitable decomposition of a partially coherent light source into a set of coherent pseudo-modes with a multitude of linear phase shifts, we demonstrate that the distortions are primarily induced by the modes whose maxima are located at the obstacle edges. We show that by tailoring spatial coherence of the source we can enable all the coherent modes to circumnavigate the obstacle, ensuring the same image quality as if the obstacle were absent from the Fourier plane. We expect our findings to be instrumental in high-contrast optical microscopy with coherence structured light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.