Abstract
Optical gradient force in a parity-time (PT)-symmetric coupled-waveguide system is theoretically studied. We find that when the system evolves from PT-symmetric region to broken-PT-symmetric region, the normalized optical forces of the two eigenmodes decrease first and become the same when the exceptional point is reached. Besides, the optical force induced PT phase transition is demonstrated. It is worth noting that, when the system is in the broken-PT-symmetric region and the length of the waveguide is much longer than the propagation length of the lossy eigenmode, the total optical gradient force acting on the two waveguides will decrease with the decreasing of the gap. This work gives us a new understanding of integrated optomechanics by combining with PT symmetry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have