Abstract

We present an innovating instrument based on optical Fourier transform (OFT) capable to measure simultaneously the specular and non specular diffraction pattern of sub-micronic periodic structures. The sample is illuminated at fixed wavelength (green laser) versus a large angular aperture both in incidence (0 to 80°) and azimuth (0 to 180°). In the present paper we focus on the possibility to measure line edge roughness (LER) and line width roughness (LWR) using this new technique. To understand the problem, different gratings with artificial periodic LER and LWR roughness have been fabricated and characterized precisely by atomic force microscopy (AFM). Different light scattering measurements have been performed using the OFT instrument with different illuminations in order to understand precisely the optical behavior of these systems. We show that we can distinguish LER and LWR by measuring simultaneously the diffracted contributions coming from the grating and from the periodic roughness. In phase LER with small LWR does not give first order diffraction contribution for the periodic roughness. In contrast, LER in opposite phase with large LWR gives a strong contribution for the first order of diffraction of the periodic roughness. In any case, the sensitivity to LER and LWR is better than 5nm for 500nm period gratings measured at 532nm. This result can be extended to samples with real LER and LWR. It shows without ambiguity that simultaneous measurement of the specular and diffracted light diffraction patterns is necessary to extract separately the two parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.