Abstract

We derive and apply formulas that employ the vector-wave addition theorem and rotation matrices for quantitative calculations of both radial and axial optical forces exerted on particles trapped in arbitrarily shaped tweezer beams. For the tightly focused beams encountered in optical tweezers, we shall highlight the importance of formulating the optical forces and beam symmetries in terms of the irradiance and total beam power. A major interest of the addition theorem treatment of optical forces is that it opens up the possibility of modeling a wide variety of beam shapes while automatically ensuring that the beams satisfy the Maxwell equations. In some of the first numerical applications of our method, we shall illustrate that resonance effects play an important role in the axial trapping position of particles comparable in size with the wavelength of the trapping beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.