Abstract

Up to now optical spectroscopies have analyzed the scattered light or the heat generated by absorption as a function of the wavelength to get information about the samples. Among the light matter interaction phenomena one that has almost never been used for spectroscopy is the direct photon momenta transfer. Probably because the forces involved are very small, varying from hundreds of femto to tens of pico Newtons. However, the nowadays very popular Optical Tweezers can easily accomplish the task to measure the photon momenta transfer and may be the basis for the Optical Force Spectroscopy. We demonstrate its potential as such a tool by observing more than eight Mie resonance peaks of a single polystyrene microsphere, and showed the capability to selective couple the light to either the TE, TM or both microsphere modes depending of the beam size, the light polarization and the beam positioning. The Mie resonances can change the optical force values by 30-50%. Our results also clearly show how the beam polarization breaks the usually assumed azimuthal symmetry by Optical Tweezers theories. We also obtained the spectrum from the two photon excited luminescence using the Optical Tweezers to hold a single bead suspended and a femtosecond Ti:sapphire laser for the non-linear excitation. This spectrum shows the pair of peaks due to both TE and TM spherical cavity modes. We have been able to observe more than 14 Mie resonance peaks in the TPE luminescence. Our results are in good agreement with optical force calculations using Maxwell stress tensor and partial wave decomposition of the incident beam approximated to a 3<sup>th</sup> order gaussian beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.