Abstract

An optical fiber sensor for strain and temperature measurement based on long period fiber grating (LPFG) cascaded with fiber Bragg grating (FBG) structure has been proposed and realized both theoretically and experimentally. Theoretical analysis shows that two microstructures with similar sensitivities cannot be used for double parameters measurement. The LPFG is micromachined by the CO2 laser, and the FBG is micromachined by the excimer laser. For the validation and comparison, two FBGs and one LPFG are cascaded with three transmission valleys, namely FBG1 valley at 1 536.3 nm, LPFG valley at 1 551.2 nm, and FBG2 valley at 1 577.3 nm. The temperature and strain characteristics of the proposed sensor are measured at 45—70 °C and 250—500 μe, respectively. The sensitivity matrix is determined by analyzing wavelength shifts and parameter response characterization of three different dips. The proposed optical fiber sensor based on LPFG cascaded with FBG structure can be efficiently used for double parameters measurement with promising application prospect and great research reference value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.