Abstract
We describe the optical and mechanical design, construction philosophy, and testing of a pair of matched, spaceflight-qualified fiber couplers. The couplers were developed for the LISA Pathfinder mission but are relevant for other applications-both on ground and in space-where a robust fiber coupler with well-controlled beam parameters and stable beam pointing is required. This particular implementation of the design called for two couplers providing collimated beams with individual waist sizes and positions. The target values were a 522 μm waist 145 mm after the collimating lens for one coupler and a virtual 520 μm waist 194 mm before the collimating lens for the second coupler. Values of (542±4) μm at (142±19) mm and (500±8) μm at (-275±8) mm were achieved, fully meeting the mission requirements. To control spurious noise effects in the interferometer, the optical system design also specified tight limits on relative beam curvature at an intended interference point. With nominal curvatures at this location of ∼2.35 m, the matching between the outputs of the two fiber couplers was measured to be λ/33 peak-valley over the central 1 mm of the beams. Results showing pointing stability of 3 μrad/°C over a 50°C range are presented. The vibration, shock, and thermal vacuum environmental testing conditions to which a pair of qualification fiber couplers were subjected-without change in performance-are listed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.