Abstract

Fiber optics offer an emerging platform for chemical and biological sensors when engineered with appropriate materials. However, the large aspect ratio makes the optical fiber a rather challenging substrate for standard microfabrication techniques. In this work, the cleaved end of an optical fiber is used as a fabrication platform for cantilever sensors based on functional polymers. The through-fiber fabrication process is triggered by photo-initiated free-radical polymerization and results in a high-aspect-ratio polymer beam in a single step. The dynamic mode application of these cantilevers is first demonstrated in air. These cantilevers are then tuned for sensing applications, including humidity and chemical sensing based on molecularly imprinted polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.