Abstract

Optical emission spectra from plasma during deposition of diamond film were investigated by an optic multi-channel spectrometer using a CCD array sensor. The diamond film was deposited by DC plasma enhanced (PE) chemical vapor deposition (CVD) using hydrogen and methane gas mixture, where substrate was located at near the plasma and the discharge was performed by intermittent discharge. When Pg during the deposition was increased from 50 to 250 Torr, the optical emissions of hydrogen (Hα and Hβ) and C2 were increased, and corresponding to these increases, deposition rate of the diamond film was increased and crystalline quality became superior. When Cm was changed from 1 to 3 %, the emission from C2 was increased, and whereas, the emission from hydrogen was decreased. Corresponding to these changes of the emission, the deposition rate of the film was increased and amorphous component in the deposited film was also increased. These results show that the increase of C2 results in the increase of the deposition rate, and increase of hydrogen is effective to eliminate amorphous component, and therefore, monitoring of the optical emission from hydrogen and C2 is useful for the deposition process of the diamond film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.