Abstract

Ferrosilicon (FeSi/sub 2/) grains (99.9%) were evaporated at room temperature onto a (100)-oriented n-type FZ Si substrate using electron beam deposition technique. Optical, electrical and structural properties were systematically investigated as a function of subsequent isochronal (2 hrs) annealing temperature (T/sub a/) in the range of 400/spl sim/950/spl deg/C. X-ray diffraction and Raman scattering analysis suggested the formation of polycrystalline /spl beta/-FeSi/sub 2/ above T/sub a/=500/spl deg/C, whereas above T/sub a/=800/spl deg/C, Si agglomeration was observed to form. The electrical resistivity of these samples reached a maximum (0.542 /spl Omega//spl middot/cm) at T/sub a/=700/spl deg/C, and then it decreased with increasing T/sub a/. Its decrease process was explained by considering the creation of Si vacancies, which could presumably be acting as holes. It is of great interest that in T/sub a/=600/spl sim/800/spl deg/C, the majority carrier converts from n- to p-type. Typical carrier concentrations and mobilities were determined to be /spl mu//sub n/=39.4 cm/sup 2//V/spl middot/sec, n/sub e/=6.59/spl times/10/sup 17/ cm/sup -3/ for n-type /spl beta/-FeSi/sub 2/ with T/sub a/=600/spl deg/C and /spl mu//sub h/=20.3 cm/sup 2//V/spl middot/sec, n/sub h/=2.22/spl times/10/sup 18/ cm/sup -3/ for p-type /spl beta/-FeSi/sub 2/ with T/sub a/=850/spl deg/C. Optical absorption measurements revealed that the nature of the bandgap varies from an indirect to direct one with increasing Ta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call