Abstract

With the introduction of carbon neutrality target, Fischer-Tropsch (FT) synthetic fuels are coming back into the limelight as a kind of carbon–neutral fuel. However, the mismatch between the overly high cetane number (CN) and the relatively low vaporability of FT synthetic diesel is unfavorable to the soot emission control, which will make it difficult to meet more stringent fuel consumption and emission regulations in future applications. To investigate the potential of oxygenated fuels combined with different exhaust gas recirculation (EGR) introduction schemes to achieve high-efficiency and clean combustion of FT synthetic diesel, an optical diagnostic study was carried out based on high-speed photography and the two-color method. The results show that all three kinds of oxygenated fuels could suppress soot emissions via self-carrying oxygen and adjusting the physicochemical properties of the fuel blend. Compared with the combustion characteristics of FT synthetic diesel, the flame area and luminosity of oxygenated blends are reduced, and the in-cylinder temperature and soot KL factor are lowered. Among them, n-butanol exhibits a greater capability of soot control compared to polyoxymethylene dimethyl ethers (PODE3) and dimethyl carbonate (DMC). In addition, introducing internal and external EGR to the engine fueled by n-butanol/FT synthetic diesel blend shows that with the increase of EGR rate, the external EGR exhibits a gradually stronger inhibiting effect on the heat release process and soot KL factor, while the internal EGR exhibits an inhibiting and then promoting effect. Moreover, the high ratio internal EGR shortens the ignition delay (ID) significantly due to the strong heating effect, which is unfavorable to the control of soot emission. The combination of oxygenated fuels and internal/external EGR could effectively optimize the combustion process of FT synthetic diesel and inhibit soot generation, but the EGR rate needs to be controlled within a proper range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.