Abstract

We present a quadriwave lateral shearing interferometer used as a wavefront sensor and mounted on a commercial non-modified transmission white-light microscope as a quantitative phase imaging technique. The setup is designed to simultaneously make measurements with both quantitative transmission phase and fluorescence modes: phase enables enhanced contrasted visualization of the cell structure including intracellular organelles, while fluorescence allows a complete and precise identification of each component. After the characterization of the phase measurement reliability and sensitivity on calibrated samples, we use these two imaging modes to measure the characteristic optical path difference between subcellular elements (mitochondria, actin fibers, and vesicles) and cell medium, and demonstrate that phase-only information should be sufficient to identify some organelles without any labeling, like lysosomes. Proof of principle results show that the technique could be used either as a qualitative tool for the control of cells before an experiment, or for quantitative studies on morphology, behavior, and dynamics of cells or cellular components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.