Abstract
A series of infrared-active optical phonons have been detected in type-I clathrate Ba$_8$Ga$_{16}$Ge$_{30}$ by terahertz time-domain spectroscopy. The conductivity spectra with the lowest-lying peaks at 1.15 and 1.80 THz are identified with so-called rattling phonons, i.e., optical modes of the guest ion Ba$^{2+}(2)$ with $T_{1u}$ symmetry in the oversized tetrakaidecahedral cage. The temperature dependence of the spectra from these modes are totally consistent with calculations based on a one-dimensional anharmonic potential model that, with decreasing temperature, the shape becomes asymmetrically sharp associated with a softening for the weight to shift to lower frequency. These temperature dependences are determined, without any interaction effects, by the Bose-factor for optical excitations of anharmonic phonons with the nonequally spaced energy levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.