Abstract

Dental composite is the most used aesthetic restorative biomaterial worldwide. However, it undergoes polymerisation shrinkage that could lead to loss of the interfacial seal between tooth and resin in some circumstances. This demands high-resolution imaging technologies to detect these defects. This study carried out a comparison between microcomputed tomography (micro-CT; Shimadzu, Japan) and swept-source optical coherence tomography (SS-OCT; Santec, Japan) in the detection of marginal adaptation defects at the tooth-resin interface. Unlike in micro-CT, it was possible to outline interfacial gaps along with tooth-resin interfaces with SS-OCT, which was attributed to the Fresnel diffraction of light. This in vitro comparison demonstrates SS-OCT has great potential in dental imaging to effectively assess dental composite adaptation and marginal defects when high resolution is desired in real time. LAY DESCRIPTION: Detection of tooth-colored restoration defects had been assessed by different radiographic methods. However, most of these methods are either invasive or suffer from low-resolution. In this study, a comparison has been carried out between two different high-resolution imaging systems; microcomputed tomography and optical coherence tomography, to explore their potentials in detecting restorations defects. The results showed optical coherence tomography has a great accuracy in locating the underlying defects when the obtained images were validated against confocal laser scanning microscopy images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.