Abstract
A set of type-(m,n)S is a set of points of a design with the property that each block of the design meets either m points or n points of S. The notions of type and of parameters of a k-set (there called characters) were introduced for the first time by Tallini Scafati in [M. Tallini Scafati, {k,n}-archi di un piano grafico finito, con particolare riguardo a quelli con due caratteri. Note I and Note II, Rend. Accad. Naz. Lincei 40 (8) (1996) 812–818 (1020–1025)]. If m=1, S gives rise to a subdesign of the design. Under weaker conditions for the order of each symmetric design, the parameters of sets of type-(1,n) in projective planes were characterised by G. Tallini and the biplane case was dealt with by S. Kim, by solving the corresponding Diophantine equation for each case, separately. In this paper, we first characterise the parameters of sets of type-(1,n) in the triplane with more generalised order conditions than prime power order. Next, we generalise the result on triplanes to arbitrary symmetric designs for λ≥3. As results, a non-existence condition for special parameter sets and a characterisation of parameters for the existence, restricted by some derived bounds, are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.