Abstract

Among pollutants released from shipping, black carbon (BC), also known as soot carbon, is of great interest due to its impacts on climate, air quality, human health and ecosystems. BC emitted from ships may enter marine waters and partially transfer to the seawater dissolved phase. In this study, we investigated the optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) derived from BC particles (DOMBC) emitted by ships, which were compared to those of DOMBC of other origins (diesel-powered industrial machine, biomass burning, urban dust), and to terrestrial and marine DOM (DOMTER, DOMMAR). Ship and diesel DOMBC displayed higher ratios of fluorescence maximum intensity to dissolved organic carbon concentration (Fmax/DOC), higher specific UV absorbance at 254 nm (SUVA254), and lower fluorescence emission wavelengths than the other tested materials. The parallel factor analysis (PARAFAC)-derived fluorophores of the ship and diesel DOMBC exhibited significant correlations with the concentration of dissolved black carbon (DBC), determined using the benzenepolycarboxylic acid (BPCA) method. Based on these results, we propose the Combustion indeX (COX), to help detecting and tracking ship/fuel combustion pollutions in marine waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.