Abstract

According to the electromagnetic scattering of two spheres, the incident on-axis Gaussian beam is expanded in terms of spherical vector wave functions (SVWFs), and the beam shape coefficients are obtained by applying the localized approximation method. Using the addition theorem, the interaction scattering fields of two chiral spheres and the internal fields are also expanded in terms of SVWFs. Based on the continuous tangential boundary conditions, the scattered field coefficients are derived analytically. Utilizing the Maxwell's stress tensor integration technique, the optical binding force between two chiral spheres is formulated explicitly. Numerical simulations of the binding force are carried out. The effects of the beam width and the radius of the sphere on the force are analyzed. The numerical results are compared with the results from references.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.