Abstract

Tin oxide (SnO2) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption alpha(omega) of intrinsic SnO2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.