Abstract
A series of barium borate-based glasses containing Al2O3, GeO2 and Y2O3 were prepared by conventional method of glass melting and annealing. The prepared glasses were investigated through optical, FTIR, density and molar volume measurements. The optical absorption spectra reveal three characteristic UV absorption peaks at about 213, 240 and 308 nm. The optical absorption measurements were used to estimate direct and indirect transition of optical band gap (Eopt), Urbach energy (ΔE) and the refractive index (n).Values of the optical parameters are found to be related to the structural changes that are taking place in the prepared glasses. The deconvoluted vibrational modes identified in the IR spectrum illustrated the conversion of triangular BO3 structural units to BO4 tetrahedral units with the addition of GeO2 or Y2O3. The formation of non-bridging oxygen atoms is assumed to lead to provide some favorable properties, mainly the optical properties and semiconducting behavior of the prepared glassy samples. Density and molar volume data are found to be dependent on the rigidity of the glass network.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have