Abstract
We demonstrate an optical arbitrary waveform measurement (OAWM) system that exploits a bank of silicon photonic (SiP) frequency-tunable coupled-resonator optical waveguide (CROW) filters for gapless spectral slicing of broadband optical signals. The spectral slices are coherently detected using a frequency comb as a multi-wavelength local oscillator (LO) and stitched together by digital signal processing (DSP). For high-quality signal reconstruction, we have implemented a maximum-ratio combining (MRC) technique based on precise calibration of the complex-valued opto-electronic transfer functions of all detection paths. In a proof-of-concept experiment, we demonstrate the viability of the scheme by implementing a four-channel system that offers an overall detection bandwidth of 140 GHz. Exploiting a femtosecond laser with precisely known pulse shape for calibration along with dynamic amplitude and phase estimation, we reconstruct 100 GBd QPSK, 16QAM and 64QAM optical data signals. The reconstructed signals show improved quality compared to that obtained with a single high-speed intradyne receiver, while the electronic bandwidth requirements of the individual coherent receivers are greatly reduced.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have