Abstract

Optical and transport properties of a series of ultrathin NbN films with different thickness grown on sapphire have been evaluated by means of spectral ellipsometry and dc measurements of superconducting critical parameters. The growth process and thus the nitrogen content have been optimized for each film in the series to achieve the highest superconducting transition temperature, which however increases with the film thickness. Optical and transport measurements agree in slowly increasing disorder while the electron density of states at the Fermi level shows a twofold decrease when the film thickness drops from 14 to 3 nm. Near-infrared extinction spectra of nanowire gratings from our films are well described by the scattering matrix method that uses optical parameters of nonstructured films and the grating geometry. The technique provides an attractive tool for analyzing various devices for nanophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.