Abstract

Evaporated gold island films have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Development of these and other applications requires film stability as well as tunability of the morphology and optical properties of the island films. In the present work, ultrathin, island-type gold films were prepared by evaporation of 1.0−15.0 nm (nominal thickness) gold at a rate of 0.005−0.012 nm s-1 onto glass substrates modified with 3-mercaptopropyl trimethoxysilane (MPTS), the latter used to improve the Au adhesion to the glass. The morphology of the films, either unannealed or annealed (20 h at 200 °C), was studied using atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HR-SEM). The information provided by the two imaging techniques is complementary, giving a good estimate of the shape of the islands and its variation with film thickness and annealing. The optical properties of the films were examined using transmission UV−vis spectroscopy, showing a strong dependence of the localized Au surface plasmon (SP) band on the morphology of the island films. The imaging and spectroscopy indicate a gradual transition from isolated islands to a continuous film upon increasing the Au thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call