Abstract
Lead zirconate titanate (PZT) thin films in the range of 35–90 nm were deposited on a sapphire (1000) substrate using the sol-gel preparation method by diluting a PZT solution at different levels and using dichloromethane as the solvent. The microstructure, surface morphology, and stoichiometry of the films were studied by x-ray diffraction, atomic force microscopy, and Rutherford backscattering. Very smooth films characterized by single perovskite and mixed pyrochlore/perovskite polycrystalline phases were obtained and their optical properties were studied by spectroscopic ellipsometry in the ultraviolet–visible–near-infrared region. The refractive index was evaluated by analyzing the spectroscopic ellipsometry spectra. The ellipsometric data were also used to evaluate the bandgap energy of the films. The results show that the optical parameters of the films depend on the crystalline structure and demonstrate that higher bandgaps are obtained for perovskite films as compared to pyrochlore or mixed pyrochlore/perovskite structures. Data also confirm the higher bandgap of the amorphous structure compared to the polycrystalline PZT phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.