Abstract

A series of Eu3+ -doped MLaAlO4 (M = Mg2+, Ca2+, Sr2+, and Ba2+) was synthesized via self-sustained solution combustion method. The samples were prepared at 600 °C, using large range of Eu3+ ion concentration (0.01–0.05 mol) to investigate the effect of concentration of dopant on the luminescence. The optimal dopant ion concentration obtained was 0.03 mol for the prepared aluminate lattice. Upon excitation at 393 nm, the samples showed the dominant photoluminescence emission bands in red region of the spectrum. The red emission of Eu3+ -activated phosphors corresponds to 5D0 → 7F2 (forced electric dipole) transition positioned at 606–611 nm. The samples were also calcined to a higher temperature to analyze the influence of temperature on the luminous efficacy. The structural determination was done via the combined efforts of Powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM) analysis. PXRD patterns of samples contain sharp peaks in 10°–80° region. Diffraction Pattern of CaLaAlO4 material has been found in close agreement to JCPDS card no. 85-1071 confirming the tetragonal crystal structure with 14/mmm space group. The crystalline nature of materials increases with rise in temperature. TEM micrographs exhibited the spherical shape of particles in 13–30 nm size. FT-IR spectra of materials showed peaks in 400–1000 cm−1 corresponding to lanthanum–oxygen and aluminum–oxygen bond vibrations. Due to excellent photoluminescent and suitable CIE coordinates, the Eu3+ -doped MLaAlO4 could have brilliant applications in the development of effective red phosphor for modern display devices and white light-emitting diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.