Abstract
Silver nanoparticles (NPs) functionalised with L-histidine is synthesised by a chemical reduction approach using two different methods of stirring – using a magnetic stirrer and an ultrasonicator. The former method exhibits a strong narrow absorption peak at 396 nm and the latter a blue-shifted weak broad plasmon band for the bare silver NPs. When the capping agent is incorporated, a single broad peak at low intensity evolves for the first method of stirring whereas two distinct peaks are noticed for the second. The Transmission Electron Microscope (TEM) results confirm the spherical shape of the silver NPs in the first case. In the second case, both spherical and elliptical particles are obtained. Zeta potential measurements further confirm the stability of the histidine-capped silver NPs in comparison with the pure silver NPs. A study of the variation of the plasmon peak with pH indicates that a basic medium favours the growth of the histidine-capped silver NPs. A surface-enhanced Raman scattering investigation confirms the adsorption of the capping molecule through the nitrogen of the imidazole ring with the carboxylate group pointing outwards. L-histidine-capped silver NPs can find application in biosensors and biomedicine, particularly when prepared by the magnetic stirrer method due to its greater stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have